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bstract

A previous paper by this author [M.J. Rothschild, Updated hazard rate equation for single safeguards, J. Hazard. Mater. 130 (1–2) (2006) 15–20]
howed that commonly used analytical methods for quantifying failure rates overestimates the risk in some circumstances. This can lead the
nalyst to mistakenly believe that a given operation presents an unacceptable risk. For a single safeguard system, a formula was presented in that
aper that accurately evaluates the risk over a wide range of conditions. This paper expands on that analysis by evaluating the failure rate for dual
afeguard systems. The safeguards can be activated at the same time or at staggered times, and the safeguard may provide an indication whether it
as successful upon a challenge, or its status may go undetected. These combinations were evaluated using a Monte Carlo simulation. Empirical
ormulas for evaluating the hazard rate were developed from this analysis. It is shown that having the safeguards activate at the same time while
roviding positive feedback of their individual actions is the most effective arrangement in reducing the hazard rate. The hazard rate can also be
educed by staggering the testing schedules of the safeguards.

2006 Elsevier B.V. All rights reserved.
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Since the longest period of time that a safeguard is in service is
eywords: Failure rate data; Hazard rate; Demand rate; Safeguard failure rate;

. Introduction

Hazards can occur when a demand is placed on a system
hat can lead to an adverse consequence, and the safeguard(s)
hat prevent or mitigate the consequence fail. The hazard rate is
imply the frequency of the initiating event (the system demand)
ultiplied by the likelihood that the safeguard(s) are in a failed

tate upon demand:

azard rate (H)

= system demand rate (D)

×safeguard in a failed state upon demand (Q) (1)

The solution to this equation is easy to solve when the safe-
uard failure data is associated with the demand. However, the

afeguard failure data is instead often given in the literature as a
ailure rate.1 In these instances, this equation cannot be directly
olved and alternative equation(s) must be used.

∗ Tel.: +1 215 785 7327.
E-mail address: mrothschild@rohmhaas.com.

1 Technically speaking, all failures can take the form of “failure upon demand.”
hen the cause of the failure is well defined and is something that can be mea-

ured, then the likelihood of failure upon that demand can be directly evaluated.
or example, the rate that a pump fails to start can often directly be associated
ith the demand rate to start the pump, giving a direct correlation. Other times,
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e Carlo simulation; Multiple safeguards

As presented in the “prequel” to this paper [1], the hazard
ate in a given test interval for a single safeguard system is as
ollows:

=
(

1

T

)
D

∫ T

0
(1 − e−λt) dt (2)

here T is the test interval (time), D the system demand rate
demands per unit time), λ the safeguard failure rate (failures
er unit time) and t is the time.

As discussed in that paper, the safeguard failure rate is depen-
ent on the system demand rate; however, this dependency
ecomes negligible when the demand rate in per test inter-
al is small (DT � 1). Furthermore, the term in the integration
1 − eλt) can be approximated as λt when for small values of λt.
he testing interval (T), the above approximation applies when
T � 1.

owever, there may be one or more causes that cannot be precisely identified
nd/or measured, so association of the failure with those causes is not feasible.
owever, from a macro view, the safeguard failures resulting from these unde-
ned causes appear to occur randomly. An example of this is a pump failing
hile running. There are possibly many causes of pump failure during opera-

ion, with no one dominating cause. However, the combination of these causes
esults in an apparent random pattern. This failure data is recorded as the number
f failures in a given time period, giving an effective failure rate.

mailto:mrothschild@rohmhaas.com
dx.doi.org/10.1016/j.jhazmat.2006.06.116
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In addition to the conditions given above for analyzing a
single safeguard system, this evaluation of multiple safeguard
systems is based on the following three conditions2:
42 M. Rothschild / Journal of Haza

Based on these two common approximations, Eq. (2) can be
onverted the well known equation given below:

= D

[(
T

2

)
λ

]
(3)

omparing to Eq. (1), the term in the bracket is shown to be
he likelihood that the safeguard is in a failed state, given a
emand. When these simplifying assumptions apply, the hazard
ate is shown to be directly proportional to the system demand
ate, the testing interval, and the safeguard failure rate and that
educing any of these parameters would reduce the hazard rate.
his equation shows that the existence of the safeguard in a

ailed state, by itself, does not result in a hazardous occurrence.
nstead, to result in a hazard, a system demand must also occur
hile the safeguard is in a failed state. Since safeguards are

ested and fixed, as needed, at each testing interval, the likelihood
f a safeguard existing in a random failed state decreases with
ncreased safeguard testing.

While the assumptions behind Eq. (3) are often valid, they
re not always so. Eq. (3) does not apply when the failure rate
r the demand rate is not very small. In that case the following
ore generalized equation, presented in the previous paper [1]

pplies:

=
[

Dλ

D + λ

] {
1 − (1 − e−(D+λ)T )

(D + λ)T

}
(4)

All of these formulas are based on the following conditions:

The safeguard is tested offline at regular defined intervals, T;
Safeguard failures and system demands are random;
Safeguard failures go undetected (“hidden” failures) until
there is either a demand or a test;
Upon detection (either by a demand or a test), the safeguard is
immediately repaired to perfect working order and returned
to service (i.e., mean time to repair is taken as insignificant).

While the above equations are useful for evaluating the hazard
ates for single safeguard systems, many systems are equipped
ith more than one safeguard. This paper presents useful for-
ulas for evaluating the hazard rate for systems with two safe-

uards.

. Dual safeguard systems

Operating with two independent safeguards reduces the like-
ihood of experiencing a hazardous event when a failure of either
afeguard is sufficient to safely shut down the process. This is
ommonly referred to in the process industry as 1002 (one out
f two) voting. However, not all 1002 systems are the same.

Two safeguards can be applied to activate in parallel or in
eries. An example of parallel safeguards is two high level
witches, each set to activate at the same level. Two safeguards

o not necessarily have to activate simultaneously to be classified
s parallel safeguards, as long as both safeguards are challenged
y the same demand. Series safeguards, on the other hand, acti-
ate at distinctly different time steps. A high level and a separate

H
a
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igh-high level alarm is an example of two safeguards in series.
o be classified as a series arrangement, successful operation of

he first safeguard would prevent a challenge to the subsequent
afeguard.

For a single safeguard system, failure of the safeguard would
e detected by the demand (resulting in a “fatal” test). With
ultiple safeguards this is often – but not always – the case. The

tatus of each safeguard when challenged is usually apparent
hen the safeguards are applied in sequence. An example of

his would be a high-level shutoff set at 80% level, and a high-
igh level shutoff set at 90% level. If the filling operation is
hut down by high level then, if the resulting level is 80%, it is
lear that the first safeguard works; if the level is 90%, then it
an surmised that the first safeguard has failed and the second
ne has worked (of course, if the tank overfills, then it is clear
hat both safeguards have failed!). The safeguard status is also
sually apparent for different safeguard actions. An example of
his situation would be two high level switches set to trip at
he same height, with one switch closing an inlet valve, and the
ther shutting off the charge pump. Following a demand, the
unctional status of each of these safeguards would be apparent
y the operational status of the equipment that they each activate.
hese safeguards are referred to in this paper as having detected

ailures.
In other safeguards arrangements, safeguards can be applied

o operate coincidentally and provide identical information, so
hat the functional status of any individual safeguard cannot be
etermined from the overall operation (unless, of course, a haz-
rd occurs, indicating failure of all of the safeguards). An exam-
le of this configuration might be two high level switches placed
o activate at or near the same level, both shutting off the charge
ump. In this case, the pump shutting down upon high level only
ndicates that at least one of the safeguards worked, but does not
ndicate the specific operational status of either safeguard. These
afeguards are referred to as having undetected failures.

The failure rate for two safeguard systems depends on
hether they are detectable or undetectable and, if the former,
hether they are in parallel or in series. For detectable safeguards

n parallel, both safeguards are challenged at each demand and
he failure of both safeguards would be immediately apparent.
n contrast, with a series arrangement, the failure of the backup
afeguard would only be apparent if the first safeguard fails. This
esults in a longer time period between demands for this safe-
uard, increasing its likelihood of being in a failed state when
eeded. Either of the above detectable configurations is better
han undetected failures.

. Evaluating hazard rates for dual safeguard systems
2 Real life, of course, is not constrained by these or the previous conditions.
owever, the analysis given in this paper is only valid when these conditions

pply.
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Fig. 1. Mont

The safeguards are tested concurrently;
The two safeguards have the same failure rate;
The safeguards do not share a common cause failure mode.3

If there is no more than one system demand in a test inter-
al (DT � 1), then there effectively is no difference between
etected and undetected systems since, following the demand,
he safeguards will be tested before the next demand occurs.
ikewise, since there is at most only one demand, then the time
eriod between the previous test and the given demand is the

ame for both safeguards, whether they are in parallel or in series.
herefore, for a low demand rate, all safeguard systems provide

he same level of protection.

3 This may not be a realistic basis for many safeguards as similar safeguards
ill likely share a common mode failure. In other safeguard combinations, such

s a high level switch paired with a weigh scale reading, the assumption of no
ommon cause failure may be reasonable. If common cause failure is possible
hen, based on a 10% common cause factor, the actual failure rate would be
round 10–20% higher than given in this analysis.

a
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n
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lo approach.

If the safeguard failure rates are also small λT � 1, then the
azard rate can be analytically solved as follows:

= D

T

∫ T

0
(λt)2 dt = Dλ2T 2

3
,

when λT and DT are < 0.1 (5)

Monte Carlo simulation was used to find the generalized solu-
ion for the hazard rate as a function of the demand and failure
ates for the three distinct types of dual safeguard systems. In this
pproach, demands are randomly placed within a test interval,
nd the resulting system failures are counted. This is repeated
umerous times to get a good statistical sampling,4 giving in an
verage number of system failures. A further description of the

onte Carlo simulation method is found in Lees [2]. The fol-

owing steps describe the Monte Carlo simulation, as depicted
n Fig. 1.

4 As many as 600,000 trials were run.
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1) From the average demand rate per test interval (DT), the
distribution and frequency of the discrete possible number
of demands in a given test interval is determined, based on
a Poisson distribution.

2) For each select number of demands-per-test interval, the
demands are randomly distributed within the test interval.

3) For each demand, the conditional likelihood of failure of the
associated safeguards is determined (Q = 1 − e−λ�t), where
�t is the time between the previous demand or test and
the current demand. For each safeguard, this probability
is compared with a random generated number between 0
and 1 (different random number for each safeguard). If Q
is greater than the random number, then the safeguard is
taken as failed. If both safeguards are in failed state upon a
demand, then a hazard occurs.

For parallel-detectable systems, the time between
demands (or between the first demand and the previous
test) is the same for both safeguards. For series-detectable
systems, the secondary safeguard is not challenged as fre-
quently as the primary safeguard. Therefore, these two safe-
guards usually have different time periods. For undetected
systems, at each demand, a determination is made of the
status of each of the safeguards. If either safeguard is deter-
mined to be in a failed state, then it remains in a failed state
until either the next testing period or until the other safe-
guard also fails, resulting in the hazard.
4) Sum the number of hazards for all demands in the test inter-
val for the given number of demands to give the “expected”
number of hazards, N for a given number of demands for
that trial.

m
b
m
t

Fig. 2. Hazard rate comparison: (a) safeguard failure rate = 0.01; (b) safeguard fa
Materials 142 (2007) 741–746

5) Repeat steps 2–4 numerous of times to get a statistical sam-
ple and take the average value of expected number of hazards
(N) for each given number of demands per test interval.

6) For each number of demands in a test interval, multiply the
expected number of hazards by the frequency of a demand
in a test interval (determined from step 1), giving the hazard
rate per number of demands per test interval.

7) Sum together the values in step 6 for all the discrete number
of demands, giving the hazard rate per test interval.

8) Multiply the value in step 7 with the testing frequency, 1/T
(tests per time period), giving the hazard rate.

. Analysis

This analysis was carried out using an Excel spreadsheet.
ig. 2a–d gives the hazard rate from this analysis for a wide
ange of failure and demand rates for dual safeguard systems.
hese graphs show that parallel, detectable systems can pro-
uce a significantly lower hazard rate than series, detectable
ystems, with both trailed by undetected systems. For exam-
le, given a safeguard failure rate of 0.1 and a demand rate of
0 per test interval, a series-detectable and an undetected sys-
em have respective hazard rates 3 times and 4.5 times greater
han a parallel-detected system. As described earlier, the safe-
uards in the parallel-detect arrangement are tested the most
requently, increasing their reliability. With the series arrange-

ent, the primary safeguard is challenged relatively frequently,

ut the secondary safeguard is only challenged when the pri-
ary safeguard fails, or during one of the official tests. With

he undetected safeguards, no knowledge is gained when they

ilure rate = 0.1; (c) safeguard failure rate = 1; (d) safeguard failure rate = 10.
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Table 1
Empirical hazard rate formulas for two safeguard systems

System Validity range Empirical hazard rate (H)

DT λT

All DT[0.1 λT[0.1 H = D(λT)2 (analytical equation)

Parallel-detect

2[DT[10
1 < λT < 10 H = D{0.2976 ln(λT ) + 0.0741} e−{0.0017(λT )2−0.0347(λT )+0.2685}DT

0.1[λT[1 H = D{0.1211(λT )1.7606} e−{0.0017(λT )2−0.0347(λT )+0.2685}DT

λT < 0.1 H = 0.21D(λT)2 e−0.265DT

DT < 2
1 < λT < 10 H = D{0.3079 ln(λT ) + 0.1757} e−{0.0032(λT )2−0.0637(λT )+0.4478}DT

0.1[λT[1 H = D{0.1791(λT )1.7346} e−{0.0032(λT )2−0.0637(λT )+0.4478}DT

λT < 0.1 H = 0.33D(λT)2 e−0.441DT

Series-detect

3[DT[10
0.5 < λT[10 H = (1/T)[{0.1507(λT) − 0.1107} ln(DT) + 0.0018(λT)3

− 0.0477(λT)2 + 0.3249(λT) − 0.0974]
0.01 < λT[0.5 H = (1/T)[0.0493(λT)1.988 ln(DT) + 0.2688(λT)1.9478]

0.01 < DT < 3
0.5[λT[10

A = 1e−4(λT)3 − 0.002(λT)2 + 0.0112(λT) − 0.0025
B = 7e−4(λT)3 − 0.0139(λT)2 + 0.0869(λT) − 0.0212
C = 1.3e−3(λT)3 − 0.0327(λT)2 + 0.289(λT) − 0.0826
H = (1/T){A(DT)3 − B(DT)2 + C(DT)}

0.01 < λT < 0.5 H = (1/T){0.0088(λT)1.8322(DT)3 − 0.0808(λT)1.9275(DT)2

+ 0.2484(λT)(DT)}

Un-detected
1 < DT[10

0.5 < λT[10 H =(1/T){(−0.0037(λT)2 + 0.1711(λT) − 0.0497) ln(DT)
+ (3 × 10−4(λT)3 − 0.0142(λT)2 + 0.1715(λT))}

0.01 < λT[0.5 H = (1/T){0.1525(λT)1.8642} ln(DT) + {0.2114(λT)1.9775}
0.01[DT[1

0.5 < λT[10 H = D{0.001(λT)3 − 0.0244(λT)2 + 0.2332(λT) − 0.0677}
0.01 < λT[0.5 H = (D/T){−0.1926(λT)3 + 0.2837(λT)2 − 5e−4(λT)}

Note. Equations derived from Monte Carlo simulation.
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re challenged, so they cannot be repaired when needed, except
uring the periodic tests.

It is interesting to note that at a low to moderate safeguard
ailure rates, the parallel-detect hazard curve reaches a peak
round two demands per test interval, and then actually declines
ith increasing demands. Apparently the advantage of detect-

ng safeguard failures during operation outweighs the risk of
oth safeguards being in a failed state at the same time during a
emand. At a relatively high failure rate (10 per test interval), it
eems that the likelihood of both safeguards being out of service
hen needed is sufficiently high that there is reduced value in
eing able to detect safeguard failures. Note that all three sys-
ems converge at low demand rates. At low demand rates, the
bility to detect failures during operation becomes less signifi-
ant when compared to the periodic safeguard tests. Simplified
q. (5) can be applied when the demand rate and testing rate are

ow (<0.1 per test interval).
Empirical equations were developed from this Monte Carlo

imulation, given in Table 1. These equations were plotted as
hown in Fig. 2, showing a good fit with the Monte Carlo sim-
lation over the given range of safeguard failures and demand
ates.

Finally, one of the conditions was that each of the safeguards
n a system is tested on the same schedule. This actually gives the
ighest hazard rate since both safeguards approach their most
ulnerable period at the same time. Instead, consider staggering
he testing schedules. For example, if the demand and failure
ate (per test interval) are small, then if the two safeguards are
ested at half periods from each other, the hazard rate would be
s follows:

= D × 2

T

∫ T/2

0
(λat)(0.5λbT + λbt) dt = D[5λaλbT

2]

24
(6)

omparing this equation with Eq. (5) shows that simply by stag-
ering the testing schedules, the hazard rate can be reduced by
8%.

. Summary

The hazard rate for two safeguard systems can be solved
nalytically given a low demand and low safeguard failure rate.
Monte Carlo simulation was used to find general solutions for

hese systems. Empirical formulas for two safeguard systems

ere derived from this analysis and are given for the various

onfigurations of two safeguard systems.
On a qualitative basis, two safeguards are obviously better

han one. However, the arrangement of these safeguards can sig-

T

Materials 142 (2007) 741–746

ificantly affect the overall hazard rate. When the demand rate
s low, it does not make much difference how the safeguards are
onfigured. Otherwise, it is best to install the safeguards to both
ctuate on the same demand and provide positive feedback to
ndicate whether they functioned correctly. The safeguards can
lso be configured to actuate at different time steps, but with
educed effectiveness. The lowest reliability is given when the
afeguards do not provide positive feedback to indicate their
perational status, upon demand. Regardless of which configu-
ation is selected, the hazard rate can be minimized by staggering
he testing schedules of the safeguards.
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lossary

xpected number of hazards (N): The expected number of hazards in a test
interval.

azard: An undesired event that can result in undesired safety, environmental
or financial consequences. Hazards are deviations from normal operations
and require the occurrence of an initiating cause with the failure of the
safeguard.

azard rate (H): The frequency (occasions per time period) at which a hazard
is expected to occur. For example, the frequency at which the pressure in
a vessel exceeds the design pressure or the frequency at which a vessel is
overfilled. The hazard rate can range from a rare calculated event to a frequent
event where the rate can be measured.

nitiating cause: An undesired cause of deviation from normal operation param-
eters that can lead to a hazard. Examples of initiating causes include a stuck
control valve, a pump failure, and failure to follow procedures.

afeguard: One or more components installed as a unit to prevent the hazard
from occurring, either by reducing the likelihood of the initiating cause or
by mitigating the consequences of the hazard. For this definition, compo-
nents can be equipment (rupture disk, level gauge, etc.) or administrative
(procedures, personal protective equipment, etc.).

afeguard failure rate (λ): The average frequency that a safeguard is estimated
to fail.

afeguard in a failed state upon demand (Q): The conditional likelihood that a
safeguard would fail, upon demand.

ystem demand rate (D): The frequency (occasions per time period), on average,
at which an initiating cause occurs. The rate can be measured, if frequent,

or estimated if not.

esting interval (T): Time period between independent tests of the safeguards.
A year is a typical test interval, but test intervals can range from essentially
continuous to no tests at all.
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